Depth data processing and 3 D reconstruction using the Kinect
نویسندگان
چکیده
The Kinect v2 is a RGB-D sensor manufactured as a gesture interaction tool for the entertainment console XBOX One. In this thesis we will use it to perform 3D reconstruction and investigate its ability to measure depth. In order to sense both color and depth the Kinect v2 has two cameras: one RGB camera and one infrared camera used to produce depth and near infrared images. These cameras need to be calibrated if we want to use them for 3D reconstruction. We present a calibration procedure for simultaneously calibrating the cameras and extracting their relative pose. This enables us to construct colored meshes of the environment. When we know the camera parameters of the infrared camera, the depth images could be used to perform the Kinect fusion algorithm. This produces well-formed meshes of the environment by combining many depth frames taken from several camera poses. The Kinect v2 uses a time-of-flight technology were the phase shifts are extracted from amplitude modulated infrared light signals produced by an emitter. The extracted phase shifts are then converted to depth values. However, the extraction of phase shifts includes a phase unwrapping procedure, which is sensitive to noise and can result in large depth errors. By utilizing the ability to access the raw phase measurements from the device we managed to modify the phase unwrapping procedure. This new procedure includes an extraction of several hypotheses for the unwrapped phase and a spatial propagation to select amongst them. This proposed method has been compared with the available drivers in the open source library libfreenect2 and the Microsoft Kinect SDK v2. Our experiments show that the depth images of the two available drivers have similar quality and our proposed method improves over libfreenect2. The calculations in the proposed method are more expensive than those in libfreenect2 but it still runs at 2.5× real time. However, contrary to libfreenect2 the proposed method lacks a filter that removes outliers from the depth images. It turned out that this is an important feature when performing Kinect fusion and future work should thus be focused on adding an outlier filter.
منابع مشابه
Implementation of 3D Object Reconstruction Using Multiple Kinect Cameras
Three-dimensional (3D) object reconstruction is to represent objects in the virtual space. It allows viewers to observe the objects at arbitrary viewpoints and feel a realistic sense. Currently, RGBD camera from Microsoft was released at a reasonable price and it has been exploited for the purpose in various fields such as education, culture, and art. In this paper, we propose a 3D object recon...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملA Post-Rectification Approach of Depth Images of Kinect v2 for 3D Reconstruction of Indoor Scenes
3D reconstruction of indoor scenes is a hot research topic in computer vision. Reconstructing fast, low-cost, and accurate dense 3D maps of indoor scenes have applications in indoor robot positioning, navigation, and semantic mapping. In other studies, the Microsoft Kinect for Windows v2 (Kinect v2) is utilized to complete this task, however, the accuracy and precision of depth information and ...
متن کامل21/2 D Scene Reconstruction of Indoor Scenes from Single RGB-D Images
Using the Manhattan world assumption we propose a new method for global 21/2D geometry estimation of indoor environments from single low quality RGB-D images. This method exploits both color and depth information at the same time and allows to obtain a full representation of an indoor scene from only a single shot of the Kinect sensor. The main novelty of our proposal is that it allows estimati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015